On fuzzy-rough sets approach to feature selection

نویسندگان

  • Rajen B. Bhatt
  • M. Gopal
چکیده

In this paper, we have shown that the fuzzy-rough set attribute reduction algorithm [Jenson, R., Shen, Q., 2002. Fuzzy-rough sets for descriptive dimensionality reduction. In: Proceedings of IEEE International Conference on Fuzzy Systems, FUZZ-IEEE'02, May 12-17, pp. 29-34] is not convergent on many real datasets due to its poorly designed termination criteria; and the computational complexity of the algorithm increases exponentially with increase in the number of input variables and in multiplication with the size of data patterns. Based on natural properties of fuzzy t-norm and t-conorm, we have put forward the concept of fuzzy-rough sets on compact computational domain, which is then utilized to improve the computational efficiency of FRSAR algorithm. Speed up factor as high as 622 have been achieved with this concept with improved accuracy. We also restructure the algorithm with efficient termination criteria to achieve the convergence on all the datasets and to improve the reliability of selected set of features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

On $L$-double fuzzy rough sets

ur aim of this  paper  is  to introduce the concept of $L$-double fuzzy rough sets in whichboth constructive and axiomatic approaches are used. In constructive approach, a pairof $L$-double fuzzy lower (resp. upper) approximation operators is defined  and the basic properties of them  are studied.From the viewpoint of the axiomatic approach, a set of axioms is constructed to characterize the $L...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

Fuzzy-rough feature selection accelerator

Fuzzy rough set method provides an effective approach to data mining and knowledge discovery from hybrid data including categorical values and numerical values. However, its time-consumption is very intolerable to analyze data sets with large scale and high dimensionality. Many heuristic fuzzy-rough feature selection algorithms have been developed however, quite often, these methods are still c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005